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Leading research requires the use of 
large-scale resources across DOE 

•  Computational facilities – ALCF, NERSC, and OLCF  
•  BES facilities – SNS/Neutrons, APS/hard x-rays, ALS/soft x-rays, LCLS/coherent 

beams, many others..  
•  BER data centers – ARM, CDIAC, CMIP-5 (ESGF), many others.. 
•  Multiple petabytes stored across these geographically distributed resources 

today, quickly approaching an Exabyte  
•  Many examples of coupling data today:  

– Experimental data from SNS coupled to models run at the OLCF & NERSC 
– Climate simulations run at ALCF and OLCF validated with BER data sets at 

ORNL data centers  
– Real-time visualization of tomography data taken at APS  
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The Problem Space 
•  Heterogeneous network infrastructure 

–  Different fabrics for IPC, SAN, LAN, and WAN 
•  Variety of data sources 

–  Difficult to optimize performance for data movement  
•  Competing workloads  

–  Data movement to a remote site could choke out a 300,000 core simulation  

Our Work 
•  A portable high-performance network overlay transport - CCI 

–  single API for network communication  
–  optimized for the WAN  

•  An optimized I/O scheduling infrastructure – Z Scheduler  
–  Optimized for common file systems, parallel and single system 

•  A workload aware scheduling infrastructure – Z Scheduler 
–  Arbitrates competing workloads on the end-to-end path 



4 Presentation name 

Our Vision 

• An optimized end-to-end data path to couple facilities  
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Common Communication Interface 

•  What is CCI?  
–  A generic, communication abstraction layer 

•  Platform for experimentation and production 
–  Supports a number of networks                   

(SAN, LAN, WAN)  
•  InfiniBand, Gemini, Ethernet, etc.  

•  New features  
–  Completed initial WAN optimized CCI transport  
–  Adding support for “virtual fabric support”  (CCI 

Routed) 
•  Provides end-to-end virtual fabric over 

heterogeneous networks via CCI over CCI!  

•  CCI is now a native transport within   
Open MPI  
–  Allows quick prototyping and testing of complex 

use-cases.  
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Experimentation 

• CCI WAN Evaluation  
• ESnet 100G testbed – DOE Advanced Networking Initiative (ANI) 

–  Results based on communications over ANI  
–  10 Gb Ethernet Myricom cards 
–  9000 MTU 
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Small messages 

•  UDP transport 
•  Pingpong latency 
•  Reliable-ordered (RO), 

reliable-unordered (RU), 
unreliable-unordered (UU) 
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RMA operations 

•  CCI Semantics allow servers to 
“self flow-control”  

•  UDP transport 
•  Many-to-one: 2 clients perform 

RMA write operations to a single 
target 0 

200 

400 

600 

800 

1000 

1200 

1400 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Client 1 

Client 2 

Cumulative 

Time (in seconds) 

B
an

dw
id

th
 (i

n 
M

B
/s

) 

0 

200 

400 

600 

800 

1000 

1200 

1400 
UDP RMA write 

TCP RMA write 

Data size (in bytes) 

B
an

dw
id

th
 (i

n 
M

B
/s

) 

•  Pipeline of RMA write operations 
•  One-to-one operation 
•  Near line rate bandwidth with data 

size > 10MB 



9 Presentation name 

•  Allow routing across heterogeneous networks 
–  InfiniBand, Cray Gemini, Ethernet 
–  Within a site and between sites 

•  Same CCI interface 
–  Messages and Remote Memory Access 

•  Enables best performance of network 
•  Routing Daemons 

–  Bridge two or more networks 
–  Route discovery and resources 
–  Forwards MSGs and RMA 
–  Multiple metrics (throughput, latency, hop count) 

•  Client routing transport 
–  Manages end-to-end state 
–  Uses native transports for communication 
–  Load-balancing when multiple routers present 

Next steps - CCI Routing 

•  Status 
–  Design completed see http://cci-forum.com 
–  Routing Daemon code in development 
–  Next steps 

•  Complete router discovery and mapping 
•  End-to-end protocol 
•  Client transport 
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End-to-end Data Transfer Orchestration 
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•  Goal: Minimize the end-to-end transfer time 
•  Online predict the file system and network capacity and adapt the bandwidth 
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I/O (File System) Scheduling  
•  Optimize IO accesses for parallel file systems 

–  Investigate strategies for minimizing impact of intermittent congestion on storage 
servers 

–  Require different strategies for read vs write, and large vs small files  
–  Minimize accesses to the metadata server(s) 

•  Design Goal  
–  Exploit I/O parallelism in Parallel File Systems 
–  Adapt I/O loads on storage servers to minimize the impact of I/O congestion on disks 

and other systems (Titan)  
•  Disk layout-aware algorithm  

–  Source Algorithm 
•  Segment files into chunks (stripe unit in PFS) 
•  Spawn multiple threads for I/Os  
•  Use pread() to read specific chunks of a file 
•  Schedule chunks based on congestion “feedback” 

–  Sink Algorithm   
•  Each “disk/lun” has a separate queue 
•  Maintain a thread pool, and threads are engaged to work on uncongested OSTs 
•  Avoid congested storage servers 
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Jan 30, 2013 

•  I/O usages in Bandwidth (GB/s) and in IOPs for Jan 30, 2013 (for 24 hours) 
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Feb 18, 2013 

•  I/O usages in Bandwidth (GB/s) and in IOPs for Feb 18, 2013 (for 24 hours) 
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Evaluating Source Algorithm 

•  Disk Layout-Aware Algorithm vs. Naïve  
–  Four I/O threads reading 20MB files, and Eight OSTs for Lustre 
–  Two OSTs are overloaded at any given time  
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Evaluating Sink Algorithm 
•  Disk Layout-aware Algorithm vs. Naïve access 

–  Eight I/O threads writing 10MB files, and Eight OSTs for Lustre  
–  Only OST4 is overloaded 

One OST overloaded 

Disk-Layout(O) aware 
algorithm shows throughput 
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WAN: TCP bandwidth 
under stress 
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Under intense bandwidth stress, random data streams will be affected, and their 
potential bandwidth drastically decreased (no fairness guaranteed)  

Per Stream Bandwidth Uncertainty 
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WAN: TCP bandwidth 
under stress 

Performance feed-back mechanism is used to learn about specific classes of 
perturbations and their impact (duration and weight) on the data transfers.  

Per Stream Bandwidth Uncertainty 
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WAN: TCP bandwidth 
under stress 

New perturbations will be predicted and classified. The training will continue during 
the entire transfer.  Traces will be used to predict characteristics of the traffic based 
on temporal properties. 

Per Stream Bandwidth Uncertainty 
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WAN: TCP bandwidth 
under stress 

The bandwidth will be dynamically adjusted to satisfy the requirement 
determined by the Z-scheduler.  

Per Stream Bandwidth Uncertainty 
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Neural Networks 
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Input%data%:%5%events%with%30%sec%and%
60%sec%dura4on,%total%of%10%events%

Input data : 103 vectors, 63 for the 
training and 40 for the testing 

Architecture of NN: Multi-layer perceptron, 10 input, 10 hidden and 1 output neuron, sigmoid activation  

Ideal result of the NN: to classify types of the events  only (5 events) and type & duration of the events (10 
events) with a detection rate 100% ON the first timestamp (on the THIRD SECOND from the START of the 
EVENT) 

Training of NN: Back-propagation error, SSE=0.048, 400000 training iterations, moving simulation mode, 
200000 training iteration of re-training, 14 seconds of re-training on Inter Core2   
Results%on%the%training%set%(63%vectors):%
C%detec4on%rate%to%classify%only%type%of%the%event%(5%events%p1Cp5)%C%93,7%%
C%detec4on%rate%to%classify%type&dura4on%of%the%event%both%(10%events%p1Cp5%with%30%sec%and%60%sec)%C%73.1%%
Results%on%the%tes4ng%set%(40%vectors):%
C%detec4on%rate%to%classify%only%type%of%the%event%(5%events%p1Cp5)%C%40,0%%
C%detec4on%rate%to%classify%type&dura4on%of%the%event%both%(10%events%p1Cp5%with%30%sec%and%60%sec)%C%25.0%*

Results showed good adaptability and  good potential capabilities of NNs  to solve this task 
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Experimental results Per Stream Bandwidth Uncertainty 
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Future Work 

•  Investigate hierarchical storage awareness 
–  How to utilize NVM devices in the orchestration framework?  
–  Investigating the use of NVM devices for extended memory buffer space using 

NVMAlloc library 
•  Integrate statistics on I/O from Titan in the prediction framework 

–  What predictions can be made on the application access pattern and on the file 
system? 

–  Can we match the prediction of the application access pattern with the 
prediction about the network status? 

–  Can we minimize the impact of data movement to large-scale simulations? 
•  Improve the detection rate of the classification by the Neuron Network 
•  Complete the implementation of the stream middleware, allowing end-

to-end traffic management 
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Questions? 

• Please see http://cci-forum.com/ for papers, presentation 
and source code related to this project 
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